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Abstract

In our previous paper, we presented the combinatorial theory for mini-
mal isostatic pinned frameworks - Assur graphs - which arise in the analy-
sis of mechanical linkages. In this paper we further explore the geometric
properties of Assur graphs, with a focus on singular realizations which
have static self-stresses. We provide a new geometric characterization
of Assur graphs, based on special singular realizations. These singular
positions are then related to dead-end positions in which an associated
mechanism with an inserted driver will stop or jam.

1 Introduction

In our previous paper [13], we developed the combinatorial properties of a class
of graphs which arise naturally in the analysis of minimal one-degree of freedom
mechanisms in the plane with one driver, with one rigid piece designated at the
‘ground’. We defined an underlying isostatic graph (generically independent and
rigid) formed by replacing the driver - the Assur graph, named after the Russian
mechanical engineer who introduced and began the analysis of this class. Every
other mechanism, which is independent (whose degree of freedom increases if
we remove any bar) is formed by composing a partially ordered collection of
k such Assur graphs (see Figure [5). The techniques of combinatorial rigidity
provided an algorithm for decomposing an arbitrary linkage into these Assur
components.

In this paper, we investigate the geometric properties (self-stresses and first-
order motions) of such Assur graphs G, when realized as a framework G(p)
in special or singular positions p. The properties of a full self-stress combined
with a ull motion relative to the ground, at selected singular positions provide
an additional, geometric necessary and sufficient condition for Assur graphs (see

§3).
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Geometric properties of Assur graphs are also important in terms of special
positions reached by the mechanisms, when moving under forces applied through
a driver (§4). These position include configurations in which this driver is unable
to force a continuing motion, because of the transmission difficulties, or reach
‘dead end’ positions in which the mechanism will ‘jam’ under the motion of the
driver, and continued motion will requre will need to be reversed.

As with the first paper, our initial motivation was to provide a more com-
plete grounding and mathematical precision for some geometric observations
and conjectures developed by Offer Shai, and presented at the Vienna work-
shop in April/May 2006. More generally, using the first-order and static theory
of plane frameworks, we want to provide a careful mathematical description
for the properties, observations and operations used by mechanical engineers in
their practice. We also hope to develop new techniques and extensions in an
ongoing collaboration between mathematicians and engineers.

2 Preliminaries

We will summarize some key results from the larger literature on rigidity [7} 21],
and from our first paper [I3]. Throughout this paper, we will assume that all
frameworks are in the plane and we only consider rigidity in the plane.

2.1 Frameworks and the rigidity matrix

A plane framework is a graph G = (V, E) together with a configuration p of
points for the vertices V' in the Euclidean plane, with pairs of vertices sharing
an edge in distinct positions. Together they are written G(p). A first-order
motion of a framework G(p) is an assignment of plane vectors p’ to the n = |V|
vertices of G(p) such that, for each edge (7,7) of G:
(pi — pj) - (P; — Pj) = 0. (1)

If the only first-order motions are trivial, that is, they arise from first-order
translations or rotations of R?, then we say that the framework is infinitesimally
rigid in the plane.

Equation |1 defines a system of linear equations, indexed by the edges (i, j) €
E, in the variables for the unknown velocities p, for the framework G(p). The
rigidity matriz Rg(p) is the real E by 2n matrix of this system. As an example,
we write out coordinates of p and of the rigidity matrix Rg(p), in the case
n = 4 and the complete graph Kj.

P= (plypz,P37p4) = (Pn,p12,P21,p22,P31,p327p41,p42);

Pi1—p21  Pi2—pP22 P21—P1i1 P22—Pi12 0 0 0 0
P11—P31  P12—P32 0 0 P31—pP11  P32—Pi12 0 0
P11—P41  P12—D42 0 0 0 0 P41—P11  P42—P12
0 0 P21—P31  P22—P32 P31—P21  P32—D22 0 0
0 0 P21—P41  P22—P42 0 0 P41—P21  P42—P22
0 0 0 0 P31—Pa1  P32—P42  P41—P31  Pa2—P32



A framework (V) E,p), with at least one edge, is infinitesimally rigid (in
dimension 2) if and only if the matrix of Rg(p) has rank 2n — 3. We say that
the configuration on n vertices p is in generic position if the determinant of any
submatrix of Rk, (p) is zero only if it is identically equal to zero in the variables
pi. For a generic configuration p, linear dependence of the rows of Rg(p) is
determined by the graph and the rigidity properties of a graph are the same for
any generic embedding. A graph G on n vertices is generically rigid if the rank
p of its rigidity matrix Rg(p) is 2n — 3, where Rg(p) is the submatrix of R(p)
containing all rows corresponding to the edges of G, for a generic configuration
p for V.

An first-order motion p’ is a solution to the matrix equation Rg(p)p’ = 0,
and first-order rigidity is studied through the column rank. We can also analyze
the rigidity through the row rank of the rigidity matrix, or through the cokernel:
[A]JRc(p) = 0. Equivalently, these row dependencies A are assignments of
scalars A;; to the edges such that at each vertex i:

Z Aij(pi —pj) =0 (2)

{31G.9)eE}

These dependencies A are called static self-stresses, or self-stresses for short,
in the language of structural engineering and mathematical rigidity, and the
cokernel is the vector space of self-stresses. Equation 2] is also called the equi-
librium condition, since the entries \;;(p; — p;) can be considered as forces
applied to the vertex p;. Equation [2| then states that these forces are in local
equilibrium at each vertex. Equivalently, a framework G(p) is independent if
the only self-stress is the zero stress, and we see that framework with at least
one bar is first-order rigid if and only if the space of self-stresses has dimension
|E| — (2n — 3).

2.2 Isostatic graphs and rigidity circuits

A framework G(p) is isostatic if it is infinitesimally rigid and independent.
There is a fundamental characterization of generically isostatic graphs (graphs
that are isostatic when realized at generic configurations p).

Theorem 1 (Laman [§]). A graph G = (V, E) has a realization p in the plane
as an first-order rigid, independent framework G(p) if and only if G satisfies
Laman’s conditions: |E| =2|V|—3

|F| <2|V(F)|—3 for all F C E,F # 0 (3)
Such a graph is also generically rigid in the plane.

Minimally dependent sets, or circuits, are edge sets C satisfying |C| =
2|V(C)| — 2 and every proper non-empty subset of C satisfies inequality .
Note that these circuits, called rigidity circuits, always have an even number of
edges.



If a rigidity circuit C' = (V, E) induces a planar graph, then a planar embed-
ding of C' (with no crossing edges) has as many vertices as it has faces, which fol-
lows immediately from Euler’s formula for planar embeddings (|V|— |E|+|F| =
2). The geometric dual graph C? is also a rigidity circuit, see [12, [3]. (The
vertices of C¢ are the faces of the embedded graph C and two vertices of C? are
adjacent if the corresponding faces of C' share an edge, see Figure|l)).
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Figure 1: The geometric dual G* (red) of a planar graph G (black)

In our previous paper [I3], we presented an overview theorem which pre-
sented an inductive construction of all rigidity circuits from K4 by a simple
sequence of steps, along with some other properties of circuits.

2.3 Reciprocal diagrams

In this paper, we will use a classical geometric method for analyzing self-
stresses in planar frameworks (frameworks on planar graphs): the reciprocal
diagram [4, B]. This construction has a rich literature in structural engineering,
beginning with the work of James Clerk Maxell [9] and continuing with the
work of Cremona [6]. This technique has been revived in the last 25 years as
a valuable technique for visualizing the behaviour of such frameworks [4, 5], in
specific geometric realizations, as well as for the study of mechanisms [16] [17].
We describe this construction and some key properties in the remainder of this
subsection. An example is worked out in Figure

Given a framework G(p) with a non-zero self-stress A (Figure [2| (a)-(c)),
there is a geometric way to verify the vertex equilibrium conditions of Equa-
tion If the forces A;j(p; — p;) are drawn end to end, as a polygonal path,

then
> Api—py) =0
{ilGi,5)eE}

if, and only if, the path closes to a polygon (classically called the polygon of
forces, Figure 2] (d), (e)). If we start with a self-stress on a planar drawing of
a planar graph G, then we can cycle clockwise through the edges at a vertex in
the order of the edges, creating a polgon for the original vertex, and a vertex
for each of the ‘faces’ (regions) of the drawing. When we create polygons for
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Figure 2: The geometric reciprocal (f) of a self-stress on a planar framework

(c).

each of the original vertices, we note that the two ends of each original bar use
opposite vectors (Figure [2[ (b), (c)): Xij(p; — p;) and A;;(p; — ps). We can
then patch these polygons together at each dual vertex (original region of the
drawing) (Figure [2] (e), (f)). Overall, there is a question whether all of these
local polygons patch together into a global drawing of the dual graph of the
planar drawing? If we started with a self-stress in a planar graph, the answer is
ves [AL[B]! As just described, this is a reciprocal figure as studied by Cremona [6],
with original edges parallel to the edges in the reciprocal drawing. Note that
only the edges with a non-zero self-stress A;; will have non-zero length in the
reciprocal. If the entire reciprocal is turned 90°, then we have the reciprocal
figures as presented by Maxwell [9] [4] [5].

Conversely, we can start with a configuration for a planar graph G(p) and a
configuration for the dual graph G¢(q) with edges in G(p) parallel to the edges
in G4(q): a reciprocal pair. We can then use the lengths of the dual edge to
define the scalars for a self-stress, by solving for A;; in the equation:

Aij(Pi — Pj) = (an — ax)

where edge hk is dual to the edge ij. Overall, the existence of the reciprocal
also implies the existence of a self-stress and this self-stress would recreate the



reciprocal. Note that, in this presentation each of the drawings is a reciprocal
of the other. That is, each side corresponds to a self-stress of the other side of
the pair.

The following theorem summarizes some key properties of frameworks and
their reciprocals. We translate the results of [4l [5] into equivalent statements of
the form we will use in §3.

Theorem 2 (Crapo and Whiteley [5]). Given a planar framework G(p) with a
self-stress, and a reciprocal diagram G¢(q), there are isomorphisms between:

1. the vector space of self stresses of the reciprocal framework G(q);

2. the space of frameworks G(p!l) with this reciprocal (with one fized vertex);
and

3. the space of parallel drawings G(p!l) with one vertex fired (equivalently,
first-order motions with one vertex fized) of the framework G(p).

Reciprocal diagrams are particularly nice for rigidity circuits, as they exist
for all generic realizations. They were studied in a much broader context in
[4, 19] as well as in the context of linkages in [I7]. We will return to them in
the proof of Theorems [7] and

2.4 Isostatic pinned frameworks

Given a framework, we are interested in its internal motions, not the trivial
ones, so we ‘pin’ the framework by prescribing, for example, the coordinates of
the endpoints of an edge, or in general by fixing the position of the vertices of
some rigid subgraph. Alternatively, we take some rigid subgraph (a single bar or
an isostatic block) which we make into the ‘ground’ and fix all its vertices which
connect to the rest of the graph. We call these vertices with fixed positions
pinned , the others unpinned, free, or inner. Edges between pinned vertices are
irrelevant to the analysis of a pinned framework. We will denote a pinned graph
by G(I, P; E), where I is the set of inner vertices, P is the set of pinned vertices,
and F is the set of edges, and each edge has at least one endpoint in I.

A pinned graph G(I, P; E) is said to satisfy the Pinned Framework Condi-
tions if |E| = 2|I| and for all subgraphs G’(I’, P'; E’) the following conditions
hold:

LB < 2|1 i |P] > 2,
2. |E'|=2|I'| —1if |[P'| =1, and
3. |E'| = 2|I'| - 3 if P' = 9.

We call a pinned graph G(I, P; E) (pinned) isostatic if G(V, E U F) is iso-
static as an unpinned graph, where V 2 I U P, no F has any vertex from I as
endpoint and the restriction of G to P = V '\ I is rigid. In other words, we can
“replace” the pinned vertex set by an isostatic graph containing the pins and



call G(I, P; F) isostatic, if this replacement graph on the pins produces an (un-
pinned) isostatic graph G. Which isostatic framework we choose, and whether
there are additional vertices there, is not relevant to either the combinatorics
in the first paper or the geometry in this second paper. In [I3] we proved the
following result:

Theorem 3. Given a pinned graph G(I, P; E), the following are equivalent:
(i)  There exists an isostatic realization of G.
(ii) The Pinned Framework Conditions are satisfied.
(i) For all placements P of P with at least two distinct locations and all
generic positions of I the resulting pinned framework is isostatic.

2.5 Combinatorial characterizations of Assur graphs

In our previous paper [13], we proved the equivalence of a series of combinatorial
properties which became the definition of an Assur graph.

Theorem 4. Assume G = (I,P;E) is a pinned isostatic graph. Then the
following are equivalent:

(i) G = (I,P;E) is minimal as a pinned isostatic graph: that is for all
proper subsets of vertices I' U P’, I' U P’ induces a pinned subgraph G' = (I' U
P E") with |E'| <2|I'| —1

(ii) If the set P is contracted to a single vertex p*, inducing the unpinned
graph G* with edge set E, then G* is a rigidity circuit.

(iii) FEither the graph has a single inner vertex of degree 2 or each time we
delete a vertex, the resulting pinned graph has a motion of all inner vertices (in
generic position).

(iv) Deletion of any edge from G results in a pinned graph that has a motion
of all inner vertices (in generic position).

An Assur graph is a pinned graph satisfying one of these four equivalent
conditions. Some examples of Assur graphs are drawn in Figure [3] and their
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Figure 3: Assur graphs

corresponding rigidity circuits in Figure [
We also demonstrated a decomposition theorem for all isostatic pinned frame-
works.

Theorem 5. A pinned graph is isostatic if and only if it decomposes into Assur
components. The decomposition into Assur components is unique.
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Figure 4: Corresponding circuits for Assur graphs

The decomposition process described in the proof of Theorem [5| of [13] in-
duces a partial order on the Assur components of an isostatic graph and this
partial order in turn can be used to re-assemble the graph from its Assur compo-
nents. This partial order can be represented in an ‘Assur scheme’ as in Figure

a)

Figure 5: An isostatics pinned framework a) has a unique decomposition into
Assur graphs b) which is represented by a partial order or Assur scheme c).

3 Singular Realizations of Assur Graphs

We now show that these Assur graphs have an additional geometric property
at selected special positions, and that this geometric property becomes another
equivalent characterization. From the general analysis of frameworks, we know
that the positions p of such Assur graphs such that G(p) is not isostatic are
the solutions to a polynomial Pure Condition [19]. For an pinned isostatic
framework, this pure condition is created by inserting distinct variables for the
coordinates of the vertices (including the pinned vertices) and taking the deter-
minant of the square |E| x 2|V rigidity matrix. We are particularly interested
in the typical solutions to the pure condition (the regular points of the asso-
ciated algebraic variety). These properties are related to the behavior of the
associated linkage when it reaches a ‘dead-end’ position and locks [16, [11] (see
§4, Corollary |1| below).



3.1 A sufficient condition from stresses and motions

We first show that given a singular realization G(p) with a special 1-dimensional
space of self-stresses and 1-dimensional space of first-order motions, G must be
an Assur graph. This is based on an observation of Offer Shai.

Theorem 6. Assume a pinned graph G has a realization p such that

1. G(p) has a unique (up to scalar) self-stress A which is non-zero on all
edges; and

2. G(p) has a unique (up to scalar) first-order motion, and this is non-zero
on all inner vertices;

then G is an Assur graph.

Proof. First we show that G is an isostatic pinned graph. For a pinned graph
with inner vertices V', and any realization p:

|E| — 2|V| = dim(Stresses[G(p)]) — dim(First-order Motions[G(p)]).

Since dim(Stresses[G(p)]) — dim(First-order Motions[G(p)]) = 1 —1 = 0, we
know that |E| = 2|V|.

Similarly, assume there is some subgraph G’ (unpinned, or pinned with one
vertex, or pinned with two vertices) which is generically dependent. This will
always have a non-zero internal self-stress in G(p) - which is zero outside of this
subframework G’(p). Therefore, this unique self-stress cannot be non-zero on
all edges. This contradiction implies the overall graph G is isostatic.

Now we assume that the graph G is not an Assur graph. Therefore it can
be decomposed into a base Assur graph G4, and the rest of the vertices and
edges G1. With this decomposition, we can sort the vertices and edges of G 4,
to the end of the indicies for the rigidity matrix to give the rigidity matrix a
block upper diagonal form. Since we have a first-order motion, non zero on all
the inner vertices of G4, we have the equation.

0 i ] = (o]

which implies the equation for Ga: [Ra(p)][ua] = 0, with [ua] # 0 . Since
G4 is an Assur graph (generically isostatic), [Ra(p))] has a row dependence.
Equivalently, there is a self-stress Aa[Ra(p)] = 0. This is also a self-stress on
the whole framework G(p)), which is zero on all edges in G;. Since we assumed
G(p) had a 1-dimensional space of self-stresses, this contradicts the assumption
that there is a self stress non-zero on all edges.

We conclude that G is an Assur graph. O

In the next two sections we prove that this condition is also necessary, com-
pleting this geometric characterization of the Assur graphs.



3.2 Stressed realizations of planar Assur graphs

Since this is a geometric theorem, we need to use some key geometric techniques
for stresses and motions of frameworks G(p). We begin with the special sub-
class of planar Assur graphs GG, where we can use the techniques of reciprocal

diagrams [4, [T5].

Theorem 7. If we have a planar Assur graph G then we have a configuration
P, such that:

1. G(p) has a one-dimensional space of self-stresses, and this self-stress is
non-zero on all edges; and

2. there is a unique (up to scalar) non-trivial first-order motion of G(p) and

this is non-zero on all inner vertices.

4 4
%%@

Figure 6: The sequence of steps for producing the configuration for a planar
Assur graph which has both a non-zero self-stress and a non-zero motion: (a)
take a generic realization of the underlying circuit and form its reciprocal; (b)
Split the reciprocal face K in order to generate a self-stress that will separate the
ground vertex in the original into predescribed distinct ground vertices (c), still
with a self-stress; (d) use a second self-stress to form a parallel drawing; (e) use
this parallel drawing to create difference vectors; and (f) turn these difference
vectors to create the first-order motion which is non-zero on all inner vertices.

Proof. We will use property (i) from the combinatorial characterization Theo-
rem[4} G is a minimal isostatic pinned framework.

We assume that the graphs G and G* (with the pinned vertices identified)
are planar. Since G* is a planar circuit, it has a dual graph G*? which is also
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a planar circuit (Figure |§| (a)). We take a generic realization of this dual graph
G*(q*), which will have a non-zero self-stress A* which is non-zero on all edges,
and the graph will be first-order rigid. We have the corresponding reciprocal
diagram G*(p*) which also is first-order rigid and has a self-stress non-zero on
all edges, by the general theory of reciprocal diagrams (§2.3 and [4]).

triangulate

<«
% d) e)
msert 1nto i
a) dual dual polygon
identify pins

k >
b) c) f)

Figure 7: Given an Assur graph G we identify the pins to & which has a dual
polygon K (a,b,c). We triangulate the ground (d) which gives a dual trivalent
tree T' (e). This tree is inserted into K (f) giving an additional self-stress whose
reciprocal gives back the triangulated ground and and separates the pins (f,b).

We will now modify this pair to split up the indentified ‘ground vertex’ k
while maintaining the self-stress and introducing a first-order motion p’ which is
non-zero on all vertices not in the ground. This process is illustrated in Figure

For simplicity, we create this ground for the pinned vertices as an isostatic
triangulation on the pinned vertices. In the extreme case where we have only two
ground vertices, we are adding one edge - and this appears as a corresponding
added dual edge T in the reciprocal. More generally, we take the original graph
G with m > 3 pinned vertices, and topologically add an isostatic framework
of triangles in place of the ‘ground’ to create the extended framework G, with
the dual graph G?. (For uniformity, we can take a path connecting the pinned
vertices p1, ..., Pm and then connect p; to each of the remaining vertices. This
will be such a generically isostatic triangulation, see Figure [7] (d).)

If there were m pinned vertices, then we add 2m — 3 edges to create the
triangulation, and create t = m — 2 triangles. In the dual G¢, this adds a 3-
valent tree T with interior vertices for each of the triangles Figure [7] (e), and
leaves attached to the vertices of the reciprocal polygon K K (Figure [7] (f)).
Transferring the counts to the reciprocal, we have added ¢ vertices and 2t + 1
edges into the dual polygon K.

Since we added 2t + 1 edges and ¢ vertices to a generically rigid framework
G*¥(q*), we have added an additional self-stress if all the vertices are in generic
position q. This added self-stress is non-zero on some of these added edges.
Because the inserted graph is a 3-valent tree, if the self-stress is non-zero on one

11



edge, then resolution at any interior vertex in general position requires it to be
non-zero on all edges at this vertex. In short, the added self-stress is non-zero
on all edges in the tree. R

This is now a realization of G - the dual to the original pinned graph with
an isostatic triangulated ground (Figure [6] (b)). In the two dimensional space
of self-stresses in the dual, adding a small multiple of the new self-stress to
the original A* on G*%(q*) (with zero on the added edges) gives a self-stress A
on @d(q) non-zero on all edges. The reciprocal of this self-stress is the desired
realization G (p) of the original pinned framework with a triangulated (isostatic)
ground (Figure |§| (c)). Since the self-stress on G(q) is non-zero on all edges,
all edges are of non-zero length in @(p) by the basic properties of reciprocals.
Moreover, since all edges of @d(q) have non-zero length, all edges in G (p) have
non-zero self-stress. With the added sub-framework D replaced by the ground,
this is the realization G(p) required for condition (i).

It remains to prove that this also satisfies condition (ii): there is a non-
trivial first-order motion with all inner vertices having non-zero velocities while
the ground has zero velocities.

If we add an additional small multiple of the non-zero self-stress A* (extended
with zeros on in the added tree in K) to A, then we have a second self-stress A?
which is the same on the edges interior to K but different on all other edges.
Taking a second drawing reciprocal to AV will give a second drawing G(p| |) which
is identical on the pinned vertices and the ground triangulation, but moves all
other edges to new positions with different lengths than in G(p) (because of the
different self-stress on these edges) (Figure[6] (d)). This is a parallel drawing of
@(p) In particular, all of the edges of the reciprocal polygon K have different
stresses, so the edges from inner vertices to the pinned vertices in @(p”) all
have different lengths (Figure [6] (d)). We can take the differences in positions
(p!l — p) as parallel drawing vectors u (Figure |§| (e)). By general arguments,
involving the 90 degree rotation of the ‘parallel drawing vectors’ [4] [14], these
parallel drawing vectors u convert the first-order motion v = ut of G (p) which
is zero on the ground and non-zero on all the inner vertices (Figure [§] (e,f)).
This completes the proof that G(p) satisfies condition (ii). O

3.3 Extension to non-planar Assur graphs

We have the desired converse result for all planar Assur graphs. In order to
extend this to singular realizations of all Assur graphs, we turn to another 19th
century technique for converting a singular realization of a general framework
G(p) into a singular realization of a related planar framework without actual
crossings of edges, using the same locations for the original vertices plus the
crossing points [I0]. This technique is named after the American structural
engineer Bow who introduced it to assist in the analyis of any plane drawing of
a framework, in which the visible regions and the edges separating them became
the pieces for the analysis of the framework via a reciprocal diagram.

12



Theorem 8. If we have an arbitrary Assur graph G then we have a configura-
tion p, such that

1. G(p) has a single self stress, and this self-stress is non-zero on all edges;
and

2. there is a unique (up to scalar) non-trivial first-order motion of G(p) and

this is mon-zero on all inner vertices.
5
2
4 3
D b
6
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Figure 8: Given a non-planar graph (or drawing) (a) we can insert crossing
points to create a planar graph (Bow’s Notation). Working on this planar
graph we have a reciprocal (b) which also is a non-planar drawing of the planar
reciprocal (c).

Proof. We already know the result for planar Assur graphs. The key step for
non-planar graphs is the classical method called ‘Bow’s notation’. Given a non-
planar framework realizing a graph G, we select pairs of edges with transversal
crossings, and insert those vertices, splitting the two edges, creating a new graph
Gy [18] (Figure [8). (Note that these ‘crossings’ do not have to be at internal
points of the segments - just not at vertices of the segments. The ’crossings are
identified topologically, but the added vertices are geometrically on the points
of intersection of the two infinite lines.) The general theorem is that the two
frameworks have isomorphic spaces of self-stresses, and first-order motions.

With this technique in mind, we can sketch a plane drawing of the final
graph we want, with the ground triangulation isolated with no crossings. This
sketch identifies the crossing points to be added, within the identified circuit
- the ‘Bowed framework’. Take a generic realization of the identified circuit
G*. Add the crossing points as identified, to create a ‘planar graph’ needed
for the reciprocal diagrams Gj(p). Create a reciprocal diagram G;(q) for this
planar framework. In this reciprocal, the identified framework, the duals of the
‘crossing points’ appear as parallelograms.

We now continue with the planar process, as outlined in the previous proof.
With the addition of the vertices and edges to split the ‘dual face’ K for the

13



ground in the dual, we create a stressed framework, and an extended reciprocal
which has the graph of the Bowed framework. Moreover, since the dual graph is
realized with parallelograms dual to the vertices added in the Bowed framework,
the crossings involve transversal crossings with the required x-appearance for
later removal. This framework will have a self-stress which is non-zero on all
edges and a non-trivial motion which is non-zero on all inner vertices. Moreover,
this Bowed framework and the framework with the crossing points removed, have
the isomorphic spaces of self-stresses and infiniesimal motions. In particular, a
self-stress which is non-zero on all edges of the Bowed framework is non-zero
on all edges of the original graph, and the first-order velocities of the original
graph are exactly those velocities assigned at these vertices within the Bowed
framework.

We have created the required configuration for the original (non-planar)
graph with a self-stress non-zero on all edges, and a first-order motion which is
zero on the ground and non-zero on all free vertices. O

c)

Figure 9: Given the reciprocal pair, we can again split the face K (b) and split
the ground vertex in the original. This configuration of the Bowed graph has a
non-zero stress, as does the non-planar original. The non-trivial parallel drawing
of the Bowed graph is a non-trivial parallel drawing of the non-planar original
(¢) and induces the required first-order motion on the non-planar original (d,e).
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3.4 Extensions to other singular realizations

With some special effort, and careful attention to some geometric details, it is
possible to extend the previous result to show the existence of such a special
configuration p which extends any initial configuration of the ground vertices
as distinct points. Without giving all the details, the idea is to form an isostatic
triangulation on the ground vertices as positioned, which in turn gives an appro-
priate dual tree ¢t with dual edges for the triangles which are on the boundary
of the ground, still as rays. The ‘ground’ polygon K is then placed on these
rays, in general position. It remains to see that the rest of the dual graph G*¢
can be realized with this initial polygon and a unique self-stress, non-zero on all
edges. Because we started with a generic circuit, this can be accomplished by
using some details about the ‘polynomial pure conditions’ of these graphs [19],
and the occurance of the remaining vertices in these polynomial conditions.

There is also a conjectured generization of the result above to any realization
of an Assur graph with a non-zero self-stress on all edges. The key seems to
be not to insist that every vertex has a non-zero velocity, but to relax this to
ask that every bar has at least one of its vertices with a non-zero velocity. The
reader can review the proof in §3.1 to see that this is the condition we actually
used in the sufficiency condition.

Conjecture 1. Assume we have an Assur graph G and a realization p such
that there is a single self stress which is non-zero on all edges. Then there is a
unique (up to scalar) non-trivial first-order motion and this is non-zero on at
least one end of each bar.

4 Inserting Drivers into Assur Graphs

For simplicitly, we will assume that our graph G is generically independent in
the plane. In a 1 DOF linkage G(p) at an independent realization, a driver d is
either

(i) a piston ab which changes the distance between the pair ab where ab this
distance is changing during the 1 DOF motion;

(ii) an angle driver which changes the angle Zabc between two bars ab, be
where this angle is changing during during the 1 DOF motion.

More generally, if we have a driver d in aindependent 1 DOF linkage G(p),
this driver will cause a finite motion in some independent realizations, and we
continue to call this a piston or angle driver even in singular positions of the
same 1 DOF graph as a linkage. We will discuss such singular positions in §3.3.

4.1 Replacing drivers

In the previous paper [I3], we created the isostatic framework from a 1 DOF
linkage by ‘replacing the driver’ to remove the degree of freedom. To return to
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a 1 DOF linkage from an Assur graph, we can ‘insert a driver’. So far, we have
used quotation marks here, because we find there are several alternatives for the
process of replacing the driver, and converse operations to insert a driver because
the processes are not yet defined - though mechanical engineering practice can
guide us. We begin be defining one clear process for ‘replacing a driver’ with
an added bar.

A simple method to remove the 1 DOF is to insert one bar in a way that
blocks the single degree of freedom (Figure . Specifically, given a one-degree
of freedom linkage G(p) at a generic configuration:

1. to replace a piston ab, we insert the bar ab;

2. to replace an angle driver on Zabc, at an internal vertex b of degree > 3,
we insert the bar ac;

3. to replace an angle driver on Zabe, at an internal vertex b of degree 2, we
insert the bar ac and remove vertex b;

4. to replace an angle driver on an angle Zap;p; where p;p; are pinned ver-
tices, we add a as a pinned vertex.

This driver replacement creates a pinned graph G and a pinned framework G(p).

Piston Angle Driver Pin Driver

a) b) c) VA 4}

ﬁnned Vertex

5 b

. gle Brace
Piston Bar

d e) f)

Figure 10: There are four types of drivers: a) driving a distance ab with a piston;
b) driving an interior angle Zabe; c¢) driving an angle at a pin Zap;p;, and the
special type illustrated in Figure Below these are the ways in which each of
these drivers is replaced to create an isostatic graph by d) an added edge (for
a piston); e) an added angle brace; or f) an added pinned vertex resulting from
adding an angle brace to the ground.

In the key example of our previous paper [13] Figures 1,2, we actually re-
placed the pistons in two steps:

16



1. we replaced the piston with a 2-valent vertex attached to the ends (which
is mechanically equivalent); and

2. we contracted one of these edges to form the single edge which was inserted
above.

A similar process could be applied to any angle driver, and the net effect would
be the edge insertion presented above (Figure [IT).

d)

b a
z%(iar
€)

f)P% AJ

Figure 11: As an alterative to the simple insertions, we can replace each driver
by a 2-valent vertex o (a,b,c), and then contract o to one of the end vertices,
creating the same result (d,e,f) as the previous insertion.

The driver is active at a specific position G(p) if it is possible, infinitesimally,
to change the length of the bar we are adding without changing the lengths of
any of the other bars. Specifically, in the rigidity matrix of G, with the added
bar d at the bottom: Rg(p)p’ = (0,...,0,54)" has a solution p’ for all possible
values of the strain sy (instantaneous change in length) of d.

More generally, we claim G(p) is isostatic, and G is generically isostatic,
provided that G(p) is independent and the driver was active.

Theorem 9. Given an independent 1 DOF linkage G with an active driver d,
the driver replacement G is an isostatic pinned framework.

Proof. Consider an independent realization G(q). There is a 1 dimensional
vector space of non-trivial first-order motions v/, with the pinned vertices fixed
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(which extends to a finite motion by general principles of algebraic geometry
D).

For a piston ab, the added bar i, j is independent if, and only if, the added
bar is on a pair 4, j with a non-zero strain:

(@i —qj) - (vi—v;)#0

The definitions of a piston driver the added bar has this required property, so
inserting this bar blocks the motion, at first-order.

Similarly, for an angle driver Zabc at an interior vertex b, adding the bar ac
is also independent, generating an isostatic framework.

If we were replacing an angle driver at a 2-valent vertex, then with the
added bar this vertex is attached to an isostatistic subframework with just two
non-collinear bars. This vertex can be removed to leave an isostatic framework
on the remaining vertices. This is done to prevent the appearance of an extra
‘Assur component’ in the derived isostatic graph and focus the analysis on the
behaviour of the rest of the graph.

If we were replacing an angle driver Zap; P; at the ground, then inserting the
bar ap; will create an isostatic framework. It will also pin the vertex a to the
ground, artifically creating an extra Assur component. To assist the analysis
of the original mechanism, we just pin the vertex a and analyze the modified
pinned framework. O

We can speak of a 1 DOF graph G with a driver d as an Assur mechanism,
if replacing the driver creates an Assur graph G.

4.2 Inserting a Driver

Conversely, we can start with an Assur graph, and insert a driver using one of
the three steps:

(i)) Remove a bar ab and insert a piston ab;

(ii) Remove an edge ac which is in a triangle abc and insert an angle driver
on the angle Zabc;

(iv) remove an edge ac and insert a new 2-valent vertex b, with bars ab, bc and
an angle driver on the angle Zabc;

(iv) if there are at least three pinned vertices p;p;py, make a pinned vertex py
into an inner vertex a, with a single bar to one of the other pinned vertices
p; and an angle driver on the angle Zap;p;.

These operations are the reverse operations of the four ways of replacing a driver.

As a generic operation, we know that this driver insertion takes an isostatic
framework to a 1 DOF framework. We now show that for an Assur graph, the
driver insertion will create a 1 DOF framework with all inner vertices in motion
relative to the ground.
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Theorem 10. If we have an Assur graph G, realized as an independent frame-
work G(p) with the pins not all collinear, and we insert a driver as above, then
the framework has 1 DOF, with all inner vertices in motion, and activating the
driver will extend this to a continuous path.

Proof. The original framework is an independent pinned framework with |E| =
2|V]. For insertions (i) (ii), we have removed one bar, so there is 1 DOF. Since
this is an Assur graph, the Characterization Theorem (iii) guarantees all inner
vertices have a non-zero velocity.

Moreover, the non-trivial first-order motion will have a non-zero strain on
the pair of the removed bar. If we inserted a piston, this will change this length
and drive the motion. If we inserted an angle driver on a triangle abc, then
driving the angle will change the length ac and thus drive the motion.

Finally, if we changed a pin to an interior vertex, then we can assume that
the vertex being made an inner vertex is not collinear with two of the other
pinned vertices. We can assume that is vertex is 2-valent in the isostatic ground
framework, so that making it inner leaves an isostatic ground, and creates a new
inner vertex a attached to the ground by two edges ap;, ap;. Removing ap; gives
a 1 DOF linkage, as required. In the resulting motion, a will have a non-zero
velocity, so driving the angle Zap;p; will drive this 1 DOF. It remains to check
that all other inner vertices are have non-zero velocities. If some inner vertex
h has the zero velocity, then it is attached to the remaining ground through
an isostatic subframework. This would mean h is contained in an isostatic
pinned subframework which does not include a. This is a contradiction of our
assumption that G was Assur. O

Driver insertion and driver replacement are inverses of one-another. That
is, if we start with an Assur graph and insert a driver, then replacing the driver
will return us to the same Assur graph. Conversely, if we start with a driver,
and replace it, then we can choose to re-insert the same driver and return to
the same 1 DOF linkage. (There is a choice in the insertion, one of which is
corresponds to the original replacement. )

However, it is now clear that we have:

(i) as many ways to insert a piston as we have interior bars;

(ii) three time as many ways to insert an angle driver as we have interior
triangles;

(iii) as many ways to insert a 2-valent angle driver as there are interior bars;

(iv) as many ways to insert a pinned angle driver as we have pins, provided
there are at least two pins.

In short, there are a lot of 1 DOF linkage with drivers which come from the
same underlying Assur graph. All of these will be Assur mechanisms.

Conversely, if we have a 1 DOF linkage, we can identify a number of pairs
whose distances are change, and angles which are changing. Each of these
could be used to insert a driver. However, different insertions will lead, after
replacement, to different graphs G. One may be an Assur graph while another
may not. Figure [[2] gives such an example.
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(2) (b) (©)

Figure 12: Given a 1 DOF linkage (a), there are several ways to insert a driver
(b,c). One of these generates an Assur graph (b), while the other is a composite
(though isostatic) graph (c).

4.3 Singular positions with a driver

The geometric question is: can we find positions at which this still has a self-
stress? If we do, is it possible that some vertices must have zero velocities
relative to the ground? Or more generally is it possible that the first-order
motion does not continue in the same direction as the original motion?

We recall that if first-order motion p’ is a first-order motion, then —p’ is also
a first-order motion. If both of these velocities extend to a finite motion, then
we say the driver has a finite motion in both directions. As a contrapositive of
the Theorem we have the following corollary.

Corollary 1. If the linkage G4(p) with the driver does not have a finite motion
in both directions, then the linkage with the driver insert has a self-stress.

Such configurations without a finite motion (continuing in both directions)
are called ‘dead ends’ in the literature of linkages [16]. For example, the existence
of a dead-end with an angle driver at the ground requires a self-stress with the
driver joint pinned, so the original isostatic graph was realized in a singular
position. As another example, if the driver is a piston, the driver edge is part of
this singular position, so that its line applies the ’ground force’ required for the
self-stress of the isostatic graph. That an independent 1 DOF linkage can move
under a driver to such a singular position (with the driver replacement), is one
reason why we have investigated the occurance of such singular positions with a
self-stress on all members (including the edge used to replace the driver). That
all the inner vertices have non-zero velocities at that singular position indicates
that we could have moved into the self-stress position in the driven motion.

It is not true that every self-stress gives a dead end position, just that dead
end positions require the self-stress. The study of such configurations is the
subject of a recent paper of Rudi Penne [I1]. That study focuses on centers of
motion, rather than self-stresses, and it is well-understood in the literature that
these are equivalent tools for many purposed, each giving its own insight into
the geometry and the combinatorics of linkages.
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5 Concluding comments

Working with several drivers. In the previous paper, we presented a de-
composition of a general isostatic pinned framework into Assur components.
With such a decomposition, we could insert one driver into all, or some, of the
components, creating a larger mechanism with as many degrees of freedom as
the drivers inserted. See, for example, the mechanism in Figures 1 and 2 of
[13]. These drivers will be independent, in the sense that each of them could
be given distinct instantaneous driving instructions without any interference or
instability.

We could also insert several drivers into a single Assur graph extra analysis
will be needed to ensure that these are independent. More generally, given
a mechanism with a number of drivers, their ‘independence’ is equivalent to
whether replacing all the drivers produces a graph which is isostatic.

Projective geometry for self-stresses. The instantaneous kinematics and
statics of plane frameworks are projectively invariant. Thus the singular position
of a graph G(p) can be transferred to any projective image of the configuration
p. In particular, we have seen that it is common in mechanical engineering
to include pistons (also called ‘slide joints’ in structural engineering). These
pistons are actually mechanically equivalent to ’joints at infinity’ between the
two ends of the slide [4] - and therefore are incorporated in the geometric (and
combinatorial) theory we have described in these two papers.

We also note that spherical mechanisms (with joints built as pines pointed
to the center of the sphere), share the same projective geometry as the plane
mechanisms. As this suggests, all of the combinatorial and geometric methods
and results presented in our two papers extend immediately from the plane to
the spherical frameworks.

In animating a one degree of freedom mechanism in computer science, it is
common to find that a single link cannot be taken as the ‘driver’ which completes
a circle while preserving all of the edges of the mechanism. Somewhere along the
path, the linkage will experience a self-stress. Some of these singular positions
will ‘jam’; others will not. The analysis of the singular positions, helps clarify
this situation. However the decision of which ‘new driver’ to pick to move points
along the subject of another study.

Extensions to 3-D. In the conclusion of our earlier paper [I3], we indicated
that the combinatorial results do have appropriate generalizations in 3-space,
at least for some ‘nice classes’ of structures, such as bar and body structures.

These will still have drivers and will have special geometry for their depen-
dencies and for dead-end positions. The specific geometric theorems given are
conjectured to also extend, but we will need new methods, because techniques
such as ‘reciprocal diagrams’ are limited to plane structures.
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